When your business is built on stellar service—delivering "wow"—you can't afford to stumble. Zappos.com gets the support it needs from automated handling equipment.
Peter Bradley is an award-winning career journalist with more than three decades of experience in both newspapers and national business magazines. His credentials include seven years as the transportation and supply chain editor at Purchasing Magazine and six years as the chief editor of Logistics Management.
Order a pair of shoes from Zappos.com, and the online retailer will have them on the way within hours and at your door the next day. They don't fit or just don't suit you? Send them back, and Zappos will pick up the shipping tab.
Sound appealing? You're not alone. That kind of service—the company calls it "delivering WOW"—has earned Zappos.com a fiercely loyal following. It has also resulted in blistering growth. Founded in 1999 as an Internet shoe retailer, Zappos.com, now a part of Amazon, has since expanded into apparel and accessories. Today, it offers millions of products from over 1,000 clothing and shoe brands, according to the company's website, with gross merchandise sales exceeding $1 billion annually.
While that kind of growth may be great for the bottom line, it has also placed enormous pressure on the back end of the operation. For example, in order to cope with surging order volume, the company was forced to expand its Shepherdsville, Ky., fulfillment distribution center just three years after its opening. When it was built in 2003, the 280,000-square-foot DC, located just 21 miles from UPS's WorldPort Louisville air hub, seemed relatively spacious. But by 2006, the facility was bursting at the seams, leading Zappos to add another 832,000 square feet in an adjacent building, which is where most fulfillment operations take place today.
Another source of pressure is the need for speed. The retailer promises customers that orders received by 4 p.m. will be delivered anywhere in the contiguous 48 states the next day—which sets a pretty high bar for fulfillment performance. "Once a customer has made a purchase, it's a race to the front door," says Jerry Koch, director of corporate marketing and product management for Intelligrated, which provided much of the material handling equipment used by Zappos.com. "That makes it challenging for operations."
It didn't take long for the company to realize the only way to handle its fast-growing volume within those tight time parameters would be to invest in a large-scale automated material handling system. After weighing its options, it found the solution it sought in a combination of homegrown warehouse management software and a material handling system that features high-speed sorters.
Tracking shoes
At the heart of Zappos' fulfillment operation is a sophisticated inventory management system that essentially treats each item as its own stock-keeping unit (SKU). "We individualize each unit with its own serial number," explains Craig Adkins, the retailer's vice president of services and operations, who notes that because of variations in size and color, it's possible to have 40 SKUs of a single style of shoe. "That gives us better quality [data] due to the complexity of size and color variation. We know the life-cycle history of every item. We know the details of shipping, returns, processing, and placing goods back in inventory."
To make this level of tracking possible, Zappos applies a unique label to every pair of shoes at receiving. As cartons arrive (either in truckload shipments from a single manufacturer, like Ugg, or in mixed shipments delivered via parcel carrier, primarily UPS), they first undergo an initial sorting. As workers remove the shoeboxes from shipping cases, they apply labels to the boxes and then scan the labels before sending the boxes on to pick locations.
"It's a relatively simple system," Adkins says. "We don't have to worry about palletizing or de-palletizing." Plus, there's no need to make decisions regarding what to keep in live inventory and what to send to storage. Adkins explains that unlike many fulfillment operations, Zappos doesn't have reserve storage. "Everything we receive goes to a pickable location," he says. That largely because although it stocks a lot of SKUs, the retailer carries a limited number of each particular shoe style, size, and color.
The receiving process is designed with efficiency in mind. "From the point of receiving to the shelf is measured in less than hours," Adkins says. That's crucial because company policy states that only goods that are in stock in the DC can be offered on its website. "It's really important to have a short cycle time," Adkins says.
What's ordered today ships today
To choreograph the fulfillment process, Zappos.com relies on a homegrown warehouse management system that is tightly integrated with its order management system. "When an order comes in, in a short period of time, it's put into a pick wave, whether it's a multi-item or single item order," Adkins says.
The picking and shipping process combines manual order selection with automated material handling from Intelligrated. At the heart of both the receiving and shipping systems are Intelligrated high-speed sliding shoe sorters. As merchandise arrives, high-speed sorters direct the incoming goods to putaway locations, primarily static racks. Order selectors pick goods from the racks, scanning those individualized bar codes, and introduce them to Intelligrated conveyors—no totes are involved. The goods then move to a second sliding shoe sorter. In-line scanners direct each product to the correct packing area.
"We have a tiered sort system," Adkins explains. Single-item orders go directly to pack stations specifically for that type of order. Multi-item orders move to stations where employees pick goods and place them in bins as directed by the system. Once an order is complete, the system generates a packing slip for the specific bin, which is then sent to a packer.
Completed packages move through Intelligrated print-and-apply modules for labeling, then travel along a third sliding shoe sorter to the correct shipping lane, where they are conveyed directly onto a trailer. The sorter handles more than 100 cartons a minute.
Intelligrated also developed a customized conveyor system that limits the amount of time a package spends traveling on a conveyor to a maximum of five minutes. That was necessary to meet Zappo.com's requirement that all orders be processed in an hour or less—a capability that allows it to fulfill its promise to deliver orders the next day. (Most orders ship via UPS's Next Day Air service.) The overall system is capable of shipping 300,000 products a day.
Many happy returns
Zappos.com also has developed a robust system for handling returns. Its easy return policy—it pays for shipping and allows returns for up to a year after purchase—means that about a third of the goods it ships out are returned, typically on the order of 15,000 to 20,000 items daily.
The retailer receives those returns, which usually amount to several truckloads a day, through dedicated doors. Returns that come back in the same carton they were shipped in (the majority of returns) are unloaded manually and conveyed to return stations. Items that arrive in envelopes or other packaging considered non-conveyable are placed in trays or hand carried to the return stations.
At the return stations, the packages are unpacked, scanned, inspected, and, if still salable, returned to inventory. "One of the things that really helps us is that individual bar code," Adkins says.
Room for expansion
When Zappos installed the initial handling system back in 2006, it did so with an eye toward expansion. In particular, the sortation system included more diverts than were required at the time.
That proved to be a far-sighted move. Along with the company's organic growth, the retailer's acquisition by Amazon in 2009 opened up new fulfillment opportunities for the facility, which had to double capacity.
Because of the advance planning, the transition proved relatively easy, Adkins reports. "We figured what we needed, built it onto the end, and backed into the system," he says. "Cutover was in less than a day. We cannot shut down operations. When we work with material handling engineering companies, that is part of the deal."
Economic activity in the logistics industry expanded in January, growing at its fastest clip in more than two years, according to the latest Logistics Managers’ Index (LMI) report, released this week.
The LMI jumped nearly five points from December to a reading of 62, reflecting continued steady growth in the U.S. economy along with faster-than-expected inventory growth across the sector as retailers, wholesalers, and manufacturers attempted to manage the uncertainty of tariffs and a changing regulatory environment. The January reading represented the fastest rate of expansion since June 2022, the LMI researchers said.
An LMI reading above 50 indicates growth across warehousing and transportation markets, and a reading below 50 indicates contraction. The LMI has remained in the mid- to high 50s range for most of the past year, indicating moderate, consistent growth in logistics markets.
Inventory levels rose 8.5 points from December, driven by downstream retailers stocking up ahead of the Trump administration’s potential tariffs on imports from Mexico, Canada, and China. Those increases led to higher costs throughout the industry: inventory costs, warehousing prices, and transportation prices all expanded to readings above 70, indicating strong growth. This occurred alongside slowing growth in warehousing and transportation capacity, suggesting that prices are up due to demand rather than other factors, such as inflation, according to the LMI researchers.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
As commodities go, furniture presents its share of manufacturing and distribution challenges. For one thing, it's bulky. Second, its main components—wood and cloth—are easily damaged in transit. Third, much of it is manufactured overseas, making for some very long supply chains with all the associated risks. And finally, completed pieces can sit on the showroom floor for weeks or months, tying up inventory dollars and valuable retail space.
In other words, the furniture market is ripe for disruption. And John "Jay" Rogers wants to be the catalyst. In 2022, he cofounded a company that takes a whole new approach to furniture manufacturing—one that leverages the power of 3D printing and robotics. Rogers serves as CEO of that company, Haddy, which essentially aims to transform how furniture—and all elements of the "built environment"—are designed, manufactured, distributed, and, ultimately, recycled.
Rogers graduated from Princeton University and went to work for a medical device startup in China before moving to a hedge fund company, where he became a Chartered Financial Analyst (CFA). After that, he joined the U.S. Marine Corps, serving eight years in the infantry. Following two combat tours, he earned an MBA from the Harvard Business School and became a consultant for McKinsey & Co.
During this time, he founded Local Motors, a next-generation vehicle manufacturer that launched the world's first 3D-printed car, the Strati, in 2014. In 2021, he brought the technology to the furniture industry to launch Haddy. The father of four boys, Rogers is also a director of the RBR Foundation, a philanthropic organization focused on education and health care.
Rogers spoke recently with DC Velocity Group Editorial Director David Maloney on an episode of the "Logistics Matters" podcast.
Q: Could you tell us about Haddy and how this unique company came to be?
A: Absolutely. We have believed in the future of distributed digital manufacturing for a long time. The world has gone from being heavily globalized to one where lengthy supply chains are a liability—thanks to factors like the growing risk of terrorist attacks and the threat of tariffs. At the same time, there are more capabilities to produce things locally. Haddy is an outgrowth of those general trends.
Adoption of the technologies used in 3D printing has been decidedly uneven, although we do hear about applications like tissue bioprinting and food printing as well as the printing of trays for dental aligners. At Haddy, we saw an opportunity to take advantage of large-scale structural printing to approach the furniture and furnishings industry. The technology and software that make this possible are already here.
Q: Furniture is a very mature market. Why did you see this as a market that was ripe for disruption?
A:The furniture market has actually been disrupted many times in the last 200 years. The manufacturing of furniture for U.S. consumption originally took place in England. It then moved to Boston and from there to New Amsterdam, the Midwest, and North Carolina. Eventually, it went to Taiwan, then China, and now Vietnam, Indonesia, and Thailand. And each of those moves brought some type of disruption.
Other disruptions have been based on design. You can look at things like the advent of glue-laminated wood with Herman Miller, MillerKnoll, and the Eames [furniture design and manufacturing] movement. And you can look at changes in the way manufacturing is powered—the move from manual operations to machine-driven operations powered by steam and electricity. So the furniture industry has been continuously disrupted, sometimes by labor markets and sometimes by machines and methods.
What's happening now is that we're seeing changes in the way that labor is applied in furniture manufacturing. Furniture has traditionally been put together by human hands. But today, we have an opportunity to reassign those hands to processes that take place around the edges of furniture production. The hands are now directing robotics through programming and design; they're not actually making the furniture.
And so, we see this mature market as being one that's been continuously disrupted during the last 200 years. And this disruption now has a lot to do with changing the way that labor interacts with the making of furniture.
Q: How do your 3D printers actually create the furniture?
A:All 3D printing is not the same. The 3D printers we use are so-called "hybrid" systems. When we say hybrid, what we mean is that they're not just printers—they are holders, printers, polishers, and cutters, and they also do milling and things like that. We measure things and then print things, which is the additive portion. Then we can do subtractive and polishing work—re-measuring, moving, and printing parts again. And so, these hybrid systems are the actual makers of the furniture.
Q: What types of products are you making?
A: We've started with hardline or case goods, as they're sometimes known, for both residential and commercial use—cabinets, wall bookshelves, freestanding bookshelves, tables, rigid chairs, planters, and the like. Basically, we've been concentrating on products that don't have upholstery.
It's not that upholstery isn't necessary in furniture, as it is used in many pieces. But right now, we have found that digital furniture manufacturing becomes analog again when you have to factor in the sewing process. And so, to move quickly and fully leverage the advantages of digital manufacturing, we're sticking to the hardline groups, except for a couple of pieces that we have debuted that have 3D-printed cushions, which are super cool.
Q: Of course, 3D printers create objects in layers. What types of materials are you running through your 3D printers to create this furniture?
A: We use recycled materials, primarily polymer composites—a bio-compostable polymer or a synthetic polymer. We look for either recycled or bio-compostable [materials], which we then reinforce with fibers and fillers, and that's what makes them composites. To create the bio-compostables, we marry them with bio-fibers, such as hemp or bamboo. For synthetic materials, we marry them with things like glass or carbon fibers.
Q: Does producing goods via 3D printing allow you to customize products easily?
A: Absolutely. The real problem in the furniture and furnishings industries is that when you tool up to make something with a jig, a fixture, or a mold, you tend to be less creative because you now feel you have to make and sell a lot of that item to justify the investment.
One of the great promises of 3D printing is that it doesn't have a mold and doesn't require tooling. It exists in the digital realm before it becomes physical, and so customization is part and parcel of the process.
I would also add that people aren't necessarily looking for one-off furniture. Just because we can customize doesn't mean we're telling customers that once we've delivered a product, we break the digital mold, so to speak. We still feel that people like styles and trends created by designers, but the customization really allows enterprise clients—like businesses, retailers, and architects—to think more freely.
Customization is most useful in allowing people to "iterate" quickly. Our designers can do something digitally first without having to build a tool, which frees them to be more creative. Plus, because our material is fully recyclable, if we print something for the first time and find it doesn't work, we can just recycle it. So there's really no penalty for a failed first printing—in fact, those failures bring their own rewards in the form of lessons we can apply in future digital and physical iterations.
Q: You currently produce your furniture in an automated microfactory in Florida, with plans to set up several more. Could you talk a little about what your microfactory looks like and how you distribute the finished goods?
A: Our microfactory is a 30,000-square-foot box that mainly contains the robots that make our furniture along with shipping docks. But we don't intend for our microfactories to be storage warehouses and trans-shipment facilities like the kind you'd typically see in the furniture industry—all of the trappings of a global supply chain. Instead, a microfactory is meant to be a site where you print the product, put it on a dock, and then ship it out. So a microfactory is essentially an enabler of regional manufacturing and distribution.
Q: Do you manufacture your products on a print-to-order basis as opposed to a print-to-stock model?
A: No. We may someday get to the point where we receive an order digitally, print it, and then send it out on a truck the next day. But right now, we aren't set up to do a mini-delivery to one customer out of a microfactory.
We are an enterprise company that partners with architects, designers, builders, and retailers, who then distribute our furnishings to their customers. We are not trying to go direct-to-consumer at this stage. It's not the way a microfactory is set up to distribute goods.
Q: You've mentioned your company's use of recycled materials. Could you talk a little bit about other ways you're looking to reduce waste and help support a circular economy?
A: Yes. Sustainability and a circular economy are really something that you have to plan for. In our case, our plans call for moving toward a distributed digital manufacturing model, where we establish microfactories in various regions around the world to serve customers within a 10-hour driving radius of the factory. That is a pretty large area, so we could cover the United States with just four or five microfactories.
That also means that we can credibly build our recycling network as part of our microfactory setup. As I mentioned, we use recycled polymer stock in our production, so we're keeping that material out of a landfill. And then we tell our enterprise customers that while the furniture they're buying is extremely durable, when they're ready to run a special and offer customers a credit for turning in their used furniture, we'll buy back the material. Buying back that material actually reduces our costs because it's already been composited and created and recaptured. So our microfactory network is well designed for circularity in concert with our enterprise customers.
Generative AI (GenAI) is being deployed by 72% of supply chain organizations, but most are experiencing just middling results for productivity and ROI, according to a survey by Gartner, Inc.
That’s because productivity gains from the use of GenAI for individual, desk-based workers are not translating to greater team-level productivity. Additionally, the deployment of GenAI tools is increasing anxiety among many employees, providing a dampening effect on their productivity, Gartner found.
To solve those problems, chief supply chain officers (CSCOs) deploying GenAI need to shift from a sole focus on efficiency to a strategy that incorporates full organizational productivity. This strategy must better incorporate frontline workers, assuage growing employee anxieties from the use of GenAI tools, and focus on use-cases that promote creativity and innovation, rather than only on saving time.
"Early GenAI deployments within supply chain reveal a productivity paradox," Sam Berndt, Senior Director in Gartner’s Supply Chain practice, said in the report. "While its use has enhanced individual productivity for desk-based roles, these gains are not cascading through the rest of the function and are actually making the overall working environment worse for many employees. CSCOs need to retool their deployment strategies to address these negative outcomes.”
As part of the research, Gartner surveyed 265 global respondents in August 2024 to assess the impact of GenAI in supply chain organizations. In addition to the survey, Gartner conducted 75 qualitative interviews with supply chain leaders to gain deeper insights into the deployment and impact of GenAI on productivity, ROI, and employee experience, focusing on both desk-based and frontline workers.
Gartner’s data showed an increase in productivity from GenAI for desk-based workers, with GenAI tools saving 4.11 hours of time weekly for these employees. The time saved also correlated to increased output and higher quality work. However, these gains decreased when assessing team-level productivity. The amount of time saved declined to 1.5 hours per team member weekly, and there was no correlation to either improved output or higher quality of work.
Additional negative organizational impacts of GenAI deployments include:
Frontline workers have failed to make similar productivity gains as their desk-based counterparts, despite recording a similar amount of time savings from the use of GenAI tools.
Employees report higher levels of anxiety as they are exposed to a growing number of GenAI tools at work, with the average supply chain employee now utilizing 3.6 GenAI tools on average.
Higher anxiety among employees correlates to lower levels of overall productivity.
“In their pursuit of efficiency and time savings, CSCOs may be inadvertently creating a productivity ‘doom loop,’ whereby they continuously pilot new GenAI tools, increasing employee anxiety, which leads to lower levels of productivity,” said Berndt. “Rather than introducing even more GenAI tools into the work environment, CSCOs need to reexamine their overall strategy.”
According to Gartner, three ways to better boost organizational productivity through GenAI are: find creativity-based GenAI use cases to unlock benefits beyond mere time savings; train employees how to make use of the time they are saving from the use GenAI tools; and shift the focus from measuring automation to measuring innovation.
According to Arvato, it made the move in order to better serve the U.S. e-commerce sector, which has experienced high growth rates in recent years and is expected to grow year-on-year by 5% within the next five years.
The two acquisitions follow Arvato’s purchase three months ago of ATC Computer Transport & Logistics, an Irish firm that specializes in high-security transport and technical services in the data center industry. Following the latest deals, Arvato will have a total U.S. network of 16 warehouses with about seven million square feet of space.
Terms of the deal were not disclosed.
Carbel is a Florida-based 3PL with a strong focus on fashion and retail. It offers custom warehousing, distribution, storage, and transportation services, operating out of six facilities in the U.S., with a footprint of 1.6 million square feet of warehouse space in Florida (2), Pennsylvania (2), California, and New York.
Florida-based United Customs Services offers import and export solutions, specializing in remote location filing across the U.S., customs clearance, and trade compliance. CTPAT-certified since 2007, United Customs Services says it is known for simplifying global trade processes that help streamline operations for clients in international markets.
“With deep expertise in retail and apparel logistics services, Carbel and United Customs Services are the perfect partners to strengthen our ability to provide even more tailored solutions to our clients. Our combined knowledge and our joint commitment to excellence will drive our growth within the US and open new opportunities,” Arvato CEO Frank Schirrmeister said in a release.
And many of them will have a budget to do it, since 51% of supply chain professionals with existing innovation budgets saw an increase earmarked for 2025, suggesting an even greater emphasis on investing in new technologies to meet rising demand, Kenco said in its “2025 Supply Chain Innovation” survey.
One of the biggest targets for innovation spending will artificial intelligence, as supply chain leaders look to use AI to automate time-consuming tasks. The survey showed that 41% are making AI a key part of their innovation strategy, with a third already leveraging it for data visibility, 29% for quality control, and 26% for labor optimization.
Still, lingering concerns around how to effectively and securely implement AI are leading some companies to sidestep the technology altogether. More than a third – 35% – said they’re largely prevented from using AI because of company policy, leaving an opportunity to streamline operations on the table.
“Avoiding AI entirely is no longer an option. Implementing it strategically can give supply chain-focused companies a serious competitive advantage,” Kristi Montgomery, Vice President, Innovation, Research & Development at Kenco, said in a release. “Now’s the time for organizations to explore and experiment with the tech, especially for automating data-heavy operations such as demand planning, shipping, and receiving to optimize your operations and unlock true efficiency.”
Among the survey’s other top findings:
there was essentially three-way tie for which physical automation tools professionals are looking to adopt in the coming year: robotics (43%), sensors and automatic identification (40%), and 3D printing (40%).
professionals tend to select a proven developer for providing supply chain innovation, but many also pick start-ups. Forty-five percent said they work with a mix of new and established developers, compared to 39% who work with established technologies only.
there’s room to grow in partnering with 3PLs for innovation: only 13% said their 3PL identified a need for innovation, and just 8% partnered with a 3PL to bring a technology to life.