We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Cookie Policy.
  • INDUSTRY PRESS ROOM
  • ABOUT
  • CONTACT
  • MEDIA FILE
  • Create Account
  • Sign In
  • Sign Out
  • My Account
Free Newsletters
  • MAGAZINE
    • Current Issue
    • Archives
    • Digital Edition
    • Subscribe
    • Newsletters
    • Mobile Apps
  • TRANSPORTATION
  • MATERIAL HANDLING
  • TECHNOLOGY
  • LIFT TRUCKS
  • PODCAST ETC
    • Podcast
    • Webcasts
    • Blogs
      • One-Off Sound Off
      • Global Logistics and Risk
      • Empowering Your Performance Edge
      • Analytics & Big Data
      • Submit your blog post
    • Events
    • White Papers
    • Industry Press Room
      • Upload Your News
    • New Products
      • Upload Your Product News
    • Conference Guides
    • Conference Reports
    • Newsletters
    • Mobile Apps
  • DCV-TV
    • DCV-TV 1: News
    • DCV-TV 2: Case Studies
    • DCV-TV 3: Webcasts
    • DCV-TV 4: Viewer Contributed
    • DCV-TV 5: Solution Profiles
    • ProMat 2023
    • Upload Your Video
  • MAGAZINE
    • Current Issue
    • Archives
    • Digital Edition
    • Subscribe
    • Newsletters
    • Mobile Apps
  • TRANSPORTATION
  • MATERIAL HANDLING
  • TECHNOLOGY
  • LIFT TRUCKS
  • PODCAST ETC
    • Podcast
    • Webcasts
    • Blogs
      • One-Off Sound Off
      • Global Logistics and Risk
      • Empowering Your Performance Edge
      • Analytics & Big Data
      • Submit your blog post
    • Events
    • White Papers
    • Industry Press Room
      • Upload Your News
    • New Products
      • Upload Your Product News
    • Conference Guides
    • Conference Reports
    • Newsletters
    • Mobile Apps
  • DCV-TV
    • DCV-TV 1: News
    • DCV-TV 2: Case Studies
    • DCV-TV 3: Webcasts
    • DCV-TV 4: Viewer Contributed
    • DCV-TV 5: Solution Profiles
    • ProMat 2023
    • Upload Your Video
Home » MIT engineers develop flexible robot
newsworthy

MIT engineers develop flexible robot

November 8, 2019
DC Velocity Staff
No Comments

In a move to expand the role robotics play in today's factories and warehouses, engineers at MIT have developed a flexible but sturdy robot that can meander through tight spaces and lift heavy objects, the institution said Thursday.

Inspired by the way a plant grows, the robot is designed with a chain-like appendage that extends and can twist and turn in any configuration to access hard-to-reach places. It is also rigid enough to support heavy loads or apply torque to assemble parts, according to MIT. Presented during the recent IEEE International Conference on Intelligent Robots and Systems (IROS), the robot represents a leap beyond today's robots that can easily navigate across open laoyouts but have a harder time with fine-tuned tasks that require bending and reaching around items and equipment, the researchers say.

"Think about changing the oil in your car," Harry Asada, professor of mechanical engineering at MIT, said in a statement. "After you open the engine roof, you have to be flexible enough to make sharp turns, left and right, to get to the oil filter, and then you have to be strong enough to twist the oil filter cap to remove it."

"Now we have a robot that can potentially accomplish such tasks," added Tongxi Yan, a former graduate student in Asada's lab, who led the work on the new robotic solution. "It can grow, retract, and grow again to a different shape, to adapt to its environment."

The design mirrors the way plants grow, "which involves the transport of nutrients, in a fluidized form, up to the plant's tip. There, they [nutrients] are converted into solid material to produce, bit by bit, a supportive stem," according to MIT. In a similar way, the flexible robot's "growing point" is a gearbox that pulls a loose chain of interlocking blocks into the box. Gears in the box then lock the chain units together and feed the chain out, unit by unit, as a rigid appendage.

The design of the new robot is an offshoot of Asada's work to address the  "last one-foot problem"—an engineering term referring to the last step, or foot, of a robot's task or exploratory mission. Robots spend much of their time navigating open space—moving items from one place to another, for example—but the last foot of their mission may require "more nimble navigation through tighter, more complex spaces to complete a task," according to the researchers. 

MIT's new flexible robot can help accomplish those goals. By adding grippers, cameras, and sensors mounted on the gearbox, the researchers say the robot could potentially meander through an aircraft's propulsion system and tighten a loose screw or reach into a cabinet to grasp a product without disturbing the inventory around it. Auto maintenance is another example of a potential application.

"The space under the hood is relatively open, but it's that last bit where you have to navigate around an engine block or something to get to the oil filter, that a fixed arm wouldn't be able to navigate around," according to MIT graduate student Emily Kamienski, who also worked on the project. "This robot could do something like that."

Robotics
KEYWORDS MIT - Massachusetts Institute of Technology
    • Related Articles

      6 River Systems lands $6 million funding to develop warehouse fulfillment robot

      MIT's "tag of everything" could protect the supply chain

      MIT adopts "inverted admissions" model for SCM degree program

    Recent Articles by DC Velocity Staff

    More women join trucking industry as technicians

    GE Appliances unveils $450 million upgrade to manufacturing plant in KY

    Freight technology provider Loadsmart acquires computer vision platform provider

    You must login or register in order to post a comment.

    Report Abusive Comment

    Most Popular Articles

    • U.S. manufacturing resurgence faces headwinds

    • InPerson interview: Geoff Muessig of Pitt Ohio

    • BNSF retires locomotive used for testing alternative fuels

    • FedEx pilots a trailer-loading robot with twin arms

    • Five questions to ask before electrifying your indoor forklift fleet

    Now Playing on DCV-TV

    20230922intralox vs large

    Intralox Parcel Automation: Never Stop Moving

    DCV-TV 4: Viewer Contributed
    Your business—and the flow of products through it—never stops. Intralox’s logistics and material handling specialists have the technologies, services, and expertise to keep you moving.

    FEATURED WHITE PAPERS

    • Rodent Radar: A Guide To Help Protect Your Business From Rodents

    • The Value of Genuine Parts and Service

    • Five questions to ask before electrifying your indoor forklift fleet

    • Unlock Success with Our Freight Tech Checklist!

    View More

    Subscribe to DC Velocity Magazine

    GET YOUR FREE SUBSCRIPTION
    • SUBSCRIBE
    • NEWSLETTERS
    • ADVERTISING
    • CUSTOMER CARE
    • CONTACT
    • ABOUT
    • STAFF
    • PRIVACY POLICY

    Copyright ©2023. All Rights ReservedDesign, CMS, Hosting & Web Development :: ePublishing