With more motive power options available than ever before, choosing the best one for your forklift fleet isn't easy. Here's what to consider before you make your pick.
Contributing Editor Toby Gooley is a writer and editor specializing in supply chain, logistics, and material handling, and a lecturer at MIT's Center for Transportation & Logistics. She previously was Senior Editor at DC VELOCITY and Editor of DCV's sister publication, CSCMP's Supply Chain Quarterly. Prior to joining AGiLE Business Media in 2007, she spent 20 years at Logistics Management magazine as Managing Editor and Senior Editor covering international trade and transportation. Prior to that she was an export traffic manager for 10 years. She holds a B.A. in Asian Studies from Cornell University.
Forklift dealers' showrooms have been pretty busy lately. According to the Industrial Truck Association (ITA), sales reached a new high in 2018, the fourth consecutive year of record growth. Of the new riders and motorized hand trucks sold that year, 64 percent were battery-powered electrics, while the remaining 36 percent had internal-combustion (IC) engines.
But the choice of motive power is not as simple as that "electric versus IC" breakdown might suggest. Today, there are more forklift power options available than ever before. On the electric side, there are lead-acid batteries of various types, lithium-ion batteries, and hydrogen fuel cells. On the internal-combustion side, fuel options range from propane (a type of liquid petroleum gas, or LP) and compressed natural gas (CNG) to diesel and gasoline.
Whether buying or leasing new equipment, fleet managers must decide which type of motive power would be best for their particular operation. We asked experts who help fleet managers make these kinds of decisions to suggest steps to follow and factors to consider while investigating the options.
STEP 1. ORGANIZE YOUR TEAM
Because a new power source could have a big impact on daily operations and productivity in addition to costs, a team approach is most effective for evaluating options, the experts agree. But who should be included on that team?
One obvious choice is the forklift dealer, says Jim Hammond, president of Valley Industrial Trucks, a Clark dealer based in Youngstown, Ohio. "[Dealers] know the benefits and disadvantages and have no vested interest in one power source or another," he says. "[Their] goal is always to [recommend] what's best for the customer's application." Input from operators is also vital, Hammond adds. "A plan can look good on paper, but if operators can't be productive and a new procedure or equipment doesn't work or make sense for them, then it won't be useful."
Maintenance technicians have a role to play too. "They're a good source of intelligence on things that may not be obvious even to seasoned forklift people, and they're not trying to push a specific narrative," says Gary Hansen, chief operating officer of Capital Equipment and Handling, a UniCarriers Americas-owned dealer headquartered in Hartland, Wis.
Kevin Paramore, technology commercialization manager for Yale Materials Handling Corp., adds that his customers' teams typically include supervisors or floor-operations managers, along with professionals representing procurement, safety, facility maintenance, and sometimes sustainability.
Although he doesn't see many companies adopting the team approach, it's a "wise path to follow," says Scott Barrett, general manager, motive power for Crown Equipment Corp. "From my experience, the more inclusive you are, the better decisions you make."
STEP 2. GET A BASELINE PICTURE
The experts we consulted recommend documenting your current operations next. This information can help you narrow the options before taking a deep dive into the various technologies. Most important is to understand the duty-cycle requirements—how much equipment is actually put to use during the day. The hour meter is the basic tool for measuring usage, but "that's a small part of the picture," Hansen says. He suggests using a telematics system to document when and how trucks are being used and when they are idle, including the timing and length of operators' breaks. That will reveal whether a fleet will have time available for proper charging and maintenance for the power sources to be considered.
Paramore suggests doing a complete inventory of what lift-truck makes, models, and power methods are currently in use. For electrics, it's helpful to list their battery compartment sizes and the facility's charging capabilities, he says. It's also useful to know how and where the trucks are being used: indoors or out; in heat and/or in cold; with or without attachments; and how high, how often, and how much weight they have to lift.
Jennifer de Souza, general manager, energy storage solutions for The Raymond Corp., advocates conducting a formal "power study." In this weeks-long exercise, her company installs an electronic meter that logs current, voltage, cumulative charge and discharge amp-hours and watt-hours, temperature, and cellular-service quality on a representative cross-section of the customer's electric trucks. From that information, she says, "we're able to understand the true power consumption in a customer's application ... and design the optimal energy solution, truck model by truck model."
The "where are we now?" assessment should also include feedback from operators, supervisors, and maintenance personnel on what their current pain points are and what they like and don't like about the existing power method(s).
STEP 3. CONSIDER POTENTIAL IMPACTS
With a picture of the operation's current state in hand, the team can then investigate what changes a new power source would bring. There are so many factors to consider that it's impossible to include them all in this article. Here are some of the main ones:
Fueling/charging. It takes time to refuel, recharge, or swap out equipment (such as batteries and LP tanks), so it's important to consider how the choice of power method will affect productivity. For example, batteries tend to lose power toward the end of their power cycle, causing trucks to operate more slowly, while liquids and gases generally maintain steady power levels until they run out. It may be necessary in some cases to allow extra time for refueling or recharging.
Barrett cites the example of switching to sit-down electrics that will be opportunity-charged during meals and breaks. The multiple steps required to access the charging port and to put the truck back together before returning to the floor can eat up one-third of an operator's 15-minute break period, he says; a long walk from the charging or fueling area to the break room will further cut into break or meal time.
Work environment. The various motive power methods have different advantages and drawbacks in regard to things like consistency of power output, time between refueling/recharging, how they perform with high or heavy lifts, and how they react to temperature. They also influence the size and design of the trucks. As a result, the application design—lifting, floor stacking, aisle width, pallet types, turning space, loading dock configuration, dirt/cleanliness, and more—could restrict the power choice.
Hansen recommends a careful walk-through to see what environmental concerns there may be. Some things might be obvious, while others will be more nuanced, he says. An example of the latter would be applications that call for handling products like food or chemicals that may be subject to regulations affecting the use of material handling equipment.
Safety. Every type of power source has its own procedures and rules for safe handling, operation, charging/filling, and disposal or recycling that end-users must follow. A change in motive power, therefore, requires safety-awareness education for every employee and ongoing training for those who come in direct contact with the power source.
De Souza cites the example of lithium-ion batteries. "It's important that customers understand the different regulations that govern the certification of lithium-ion so they can ensure that they are getting not only a robust solution that's purpose-built for the lift-truck industry, but also one that complies with well-accepted regulations to protect end-users," she explains.
Infrastructure. Changing power sources may require costly modifications to a building's infrastructure. If you move from LP to electrics with lead-acid batteries, for example, you'll need to build a battery room with appropriate ventilation, electrical service, and battery monitoring and handling equipment. Adopting hydrogen or CNG requires installing gas-storage infrastructure and dispensing stations that meet safety codes and regulations.
One common consideration is electricity. Paramore notes that some power types require charging or filling stations to be available at multiple locations in a facility. In such cases, it may be necessary to run electrical service to additional positions in the building to create enough power drops for the new stations, he says. Furthermore, conventional, opportunity, and fast-charging applications place different burdens on the electrical service—and as several of the experts pointed out, older facilities may not have sufficient capacity for opportunity or fast charging and will require utility upgrades.
Total cost of ownership and ROI. No matter what the final choice is, there will be costs involved. Many buyers focus on the purchase price, and for new technologies, the upfront cost can seem daunting, although prices are coming down.
But experts caution against basing decisions on such a limited view. Raymond's de Souza points to lithium-ion batteries as an example. Though the initial cost can give potential buyers a bit of "sticker shock," she says, that's because they're not taking into account all the background costs of lead-acid batteries, like maintenance, the need for redundant batteries, watering and cleaning, and maintaining battery rooms. To make a true cost comparison among motive power options, she says, "it's very important to adopt a holistic view and shift from the traditional, pure-purchase-price approach to total-cost-of-ownership thinking."
Hammond agrees. "Look at what adds the most value to the operation and brings, for example, an increase in productivity or reduces downtime. In most cases, that's not going to be the lowest-cost solution." The challenge, he says, is to determine the actual return on investment (ROI) by weighing all relevant costs—including those that may not be obvious or are not easy to quantify—against the benefits.
STEP 4. TEST IT OUT
Once a team has narrowed its options to one motive power type, it's time to test it in actual operating conditions. This typically involves a combination of data gathering using telemetry devices, in-person observation and monitoring, and collecting feedback from operators and supervisors.
As for how much time is needed for testing, opinions vary. Yale, for one, favors a two-week timeline: "Operators will get the real experience plugging in or refilling, and you can run through the entire shift cycle. ... This is real data," Paramore says. "You can't sugarcoat anything." UniCarriers' Hansen prefers at least a month. "We bring the equipment in and tell them to make sure they use it in every department, on every shift, and if possible, during their peak period to see ... how it handles that." The aim is to ensure that "when the electrics have been delivered and the IC trucks have been taken away, everything's working right," he adds.
No one likes change, so testing should focus on whether the new equipment will do the job efficiently and reliably, rather than on users' initial reactions, Hammond of Valley Industrial Trucks says. "If someone has operated the same type of power or machine for the last 30 years and you bring in something new, they're going to find issues." How much negative feedback you're likely to get depends on how big a change there is. "If you go from lead-acid to lithium-ion, that's usually no big deal; it's just a different process in charging," he says. "But to go from, say, diesel to electric—that requires very different behavior on the part of the operators."
That's why proper operator training during both the demo and implementation is so important, Crown Equipment's Barrett says. "I don't think end-users always recognize the importance and the depth of training they have to go through" when making a significant change in their equipment. "Even for something that seems as simple as connecting a truck to a charger," he says, "you really need to manage change and reinforce good habits."
DECISION TIME
When it comes time to make the final decision, Hammond urges anyone considering motive-power options to leave preconceived notions behind. "Don't discount any particular power source because you looked at it and rejected it before, because technology has changed drastically," he says. For example, the performance of the new generation of electric trucks "meets or exceeds that of other power sources, so they're viable today for applications where they weren't before."
For her part, de Souza urges end-users to take the long view. Particularly when a newer technology is involved, she says, it's important to look at it not as a commodity purchase but as a technological differentiator that will strengthen their business's competitiveness in the future.
The final buying decision is almost always made at a level above the project team, Barrett says. How well the team communicates its findings up to that level, then, has a big impact on whether or not management makes an informed decision.
Sometimes, though, despite a strong business case showing potential savings or an increase in productivity, pricing may lead higher-ups to say "maybe next year," Hansen notes. Providing the decision-makers with occasional updates and getting advice from your finance department on how to fit the project into the company's budget can be helpful, as can identifying alternative financing options like leasing. His advice: "Make sure you offer not just solutions for the equipment, but also for making the new power source or trucks palatable to everyone—including the person who's writing the checks."
Artificial intelligence (AI) and data science were hot business topics in 2024 and will remain on the front burner in 2025, according to recent research published in AI in Action, a series of technology-focused columns in the MIT Sloan Management Review.
In Five Trends in AI and Data Science for 2025, researchers Tom Davenport and Randy Bean outline ways in which AI and our data-driven culture will continue to shape the business landscape in the coming year. The information comes from a range of recent AI-focused research projects, including the 2025 AI & Data Leadership Executive Benchmark Survey, an annual survey of data, analytics, and AI executives conducted by Bean’s educational firm, Data & AI Leadership Exchange.
The five trends range from the promise of agentic AI to the struggle over which C-suite role should oversee data and AI responsibilities. At a glance, they reveal that:
Leaders will grapple with both the promise and hype around agentic AI. Agentic AI—which handles tasks independently—is on the rise, in the form of generative AI bots that can perform some content-creation tasks. But the authors say it will be a while before such tools can handle major tasks—like make a travel reservation or conduct a banking transaction.
The time has come to measure results from generative AI experiments. The authors say very few companies are carefully measuring productivity gains from AI projects—particularly when it comes to figuring out what their knowledge-based workers are doing with the freed-up time those projects provide. Doing so is vital to profiting from AI investments.
The reality about data-driven culture sets in. The authors found that 92% of survey respondents feel that cultural and change management challenges are the primary barriers to becoming data- and AI-driven—indicating that the shift to AI is about much more than just the technology.
Unstructured data is important again. The ability to apply Generative AI tools to manage unstructured data—such as text, images, and video—is putting a renewed focus on getting all that data into shape, which takes a whole lot of human effort. As the authors explain “organizations need to pick the best examples of each document type, tag or graph the content, and get it loaded into the system.” And many companies simply aren’t there yet.
Who should run data and AI? Expect continued struggle. Should these roles be concentrated on the business or tech side of the organization? Opinions differ, and as the roles themselves continue to evolve, the authors say companies should expect to continue to wrestle with responsibilities and reporting structures.
Shippers today are praising an 11th-hour contract agreement that has averted the threat of a strike by dockworkers at East and Gulf coast ports that could have frozen container imports and exports as soon as January 16.
The agreement came late last night between the International Longshoremen’s Association (ILA) representing some 45,000 workers and the United States Maritime Alliance (USMX) that includes the operators of port facilities up and down the coast.
Details of the new agreement on those issues have not yet been made public, but in the meantime, retailers and manufacturers are heaving sighs of relief that trade flows will continue.
“Providing certainty with a new contract and avoiding further disruptions is paramount to ensure retail goods arrive in a timely manner for consumers. The agreement will also pave the way for much-needed modernization efforts, which are essential for future growth at these ports and the overall resiliency of our nation’s supply chain,” Gold said.
The next step in the process is for both sides to ratify the tentative agreement, so negotiators have agreed to keep those details private in the meantime, according to identical statements released by the ILA and the USMX. In their joint statement, the groups called the six-year deal a “win-win,” saying: “This agreement protects current ILA jobs and establishes a framework for implementing technologies that will create more jobs while modernizing East and Gulf coasts ports – making them safer and more efficient, and creating the capacity they need to keep our supply chains strong. This is a win-win agreement that creates ILA jobs, supports American consumers and businesses, and keeps the American economy the key hub of the global marketplace.”
The breakthrough hints at broader supply chain trends, which will focus on the tension between operational efficiency and workforce job protection, not just at ports but across other sectors as well, according to a statement from Judah Levine, head of research at Freightos, a freight booking and payment platform. Port automation was the major sticking point leading up to this agreement, as the USMX pushed for technologies to make ports more efficient, while the ILA opposed automation or semi-automation that could threaten jobs.
"This is a six-year détente in the tech-versus-labor tug-of-war at U.S. ports," Levine said. “Automation remains a lightning rod—and likely one we’ll see in other industries—but this deal suggests a cautious path forward."
Editor's note: This story was revised on January 9 to include additional input from the ILA, USMX, and Freightos.
Logistics industry growth slowed in December due to a seasonal wind-down of inventory and following one of the busiest holiday shopping seasons on record, according to the latest Logistics Managers’ Index (LMI) report, released this week.
The monthly LMI was 57.3 in December, down more than a percentage point from November’s reading of 58.4. Despite the slowdown, economic activity across the industry continued to expand, as an LMI reading above 50 indicates growth and a reading below 50 indicates contraction.
The LMI researchers said the monthly conditions were largely due to seasonal drawdowns in inventory levels—and the associated costs of holding them—at the retail level. The LMI’s Inventory Levels index registered 50, falling from 56.1 in November. That reduction also affected warehousing capacity, which slowed but remained in expansion mode: The LMI’s warehousing capacity index fell 7 points to a reading of 61.6.
December’s results reflect a continued trend toward more typical industry growth patterns following recent years of volatility—and they point to a successful peak holiday season as well.
“Retailers were clearly correct in their bet to stock [up] on goods ahead of the holiday season,” the LMI researchers wrote in their monthly report. “Holiday sales from November until Christmas Eve were up 3.8% year-over-year according to Mastercard. This was largely driven by a 6.7% increase in e-commerce sales, although in-person spending was up 2.9% as well.”
And those results came during a compressed peak shopping cycle.
“The increase in spending came despite the shorter holiday season due to the late Thanksgiving,” the researchers also wrote, citing National Retail Federation (NRF) estimates that U.S. shoppers spent just short of a trillion dollars in November and December, making it the busiest holiday season of all time.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
The overall national industrial real estate vacancy rate edged higher in the fourth quarter, although it still remains well below pre-pandemic levels, according to an analysis by Cushman & Wakefield.
Vacancy rates shrunk during the pandemic to historically low levels as e-commerce sales—and demand for warehouse space—boomed in response to massive numbers of people working and living from home. That frantic pace is now cooling off but real estate demand remains elevated from a long-term perspective.
“We've witnessed an uptick among firms looking to lease larger buildings to support their omnichannel fulfillment strategies and maintain inventory for their e-commerce, wholesale, and retail stock. This trend is not just about space, but about efficiency and customer satisfaction,” Jason Tolliver, President, Logistics & Industrial Services, said in a release. “Meanwhile, we're also seeing a flurry of activity to support forward-deployed stock models, a strategy that keeps products closer to the market they serve and where customers order them, promising quicker deliveries and happier customers.“
The latest figures show that industrial vacancy is likely nearing its peak for this cooling cycle in the coming quarters, Cushman & Wakefield analysts said.
Compared to the third quarter, the vacancy rate climbed 20 basis points to 6.7%, but that level was still 30 basis points below the 10-year, pre-pandemic average. Likewise, overall net absorption in the fourth quarter—a term for the amount of newly developed property leased by clients—measured 36.8 million square feet, up from the 33.3 million square feet recorded in the third quarter, but down 20% on a year-over-year basis.
In step with those statistics, real estate developers slowed their plans to erect more buildings. New construction deliveries continued to decelerate for the second straight quarter. Just 85.3 million square feet of new industrial product was completed in the fourth quarter, down 8% quarter-over-quarter and 48% versus one year ago.
Likewise, only four geographic markets saw more than 20 million square feet of completions year-to-date, compared to 10 markets in 2023. Meanwhile, as construction starts remained tempered overall, the under-development pipeline has continued to thin out, dropping by 36% annually to its lowest level (290.5 million square feet) since the third quarter of 2018.
Despite the dip in demand last quarter, the market for industrial space remains relatively healthy, Cushman & Wakefield said.
“After a year of hesitancy, logistics is entering a new, sustained growth phase,” Tolliver said. “Corporate capital is being deployed to optimize supply chains, diversify networks, and minimize potential risks. What's particularly encouraging is the proactive approach of retailers, wholesalers, and 3PLs, who are not just reacting to the market, but shaping it. 2025 will be a year characterized by this bias for action.”
Under terms of the deal, Sick and Endress+Hauser will each hold 50% of a joint venture called "Endress+Hauser SICK GmbH+Co. KG," which will strengthen the development and production of analyzer and gas flow meter technologies. According to Sick, its gas flow meters make it possible to switch to low-emission and non-fossil energy sources, for example, and the process analyzers allow reliable monitoring of emissions.
As part of the partnership, the product solutions manufactured together will now be marketed by Endress+Hauser, allowing customers to use a broader product portfolio distributed from a single source via that company’s global sales centers.
Under terms of the contract between the two companies—which was signed in the summer of 2024— around 800 Sick employees located in 42 countries will transfer to Endress+Hauser, including workers in the global sales and service units of Sick’s “Cleaner Industries” division.
“This partnership is a perfect match,” Peter Selders, CEO of the Endress+Hauser Group, said in a release. “It creates new opportunities for growth and development, particularly in the sustainable transformation of the process industry. By joining forces, we offer added value to our customers. Our combined efforts will make us faster and ultimately more successful than if we acted alone. In this case, one and one equals more than two.”
According to Sick, the move means that its current customers will continue to find familiar Sick contacts available at Endress+Hauser for consulting, sales, and service of process automation solutions. The company says this approach allows it to focus on its core business of factory and logistics automation to meet global demand for automation and digitalization.
Sick says its core business has always been in factory and logistics automation, which accounts for more than 80% of sales, and this area remains unaffected by the new joint venture. In Sick’s view, automation is crucial for industrial companies to secure their productivity despite limited resources. And Sick’s sensor solutions are a critical part of industrial automation, which increases productivity through artificial intelligence and the digital networking of production and supply chains.