In Person interview: Andreas Boedenauer of Agilox North America
In our continuing series of discussions with top supply-chain company executives, Andreas Boedenauer discusses the autonomous mobile robot market and the swarm technology that makes their deployments and operations extremely efficient.
David Maloney has been a journalist for more than 35 years and is currently the group editorial director for DC Velocity and Supply Chain Quarterly magazines. In this role, he is responsible for the editorial content of both brands of Agile Business Media. Dave joined DC Velocity in April of 2004. Prior to that, he was a senior editor for Modern Materials Handling magazine. Dave also has extensive experience as a broadcast journalist. Before writing for supply chain publications, he was a journalist, television producer and director in Pittsburgh. Dave combines a background of reporting on logistics with his video production experience to bring new opportunities to DC Velocity readers, including web videos highlighting top distribution and logistics facilities, webcasts and other cross-media projects. He continues to live and work in the Pittsburgh area.
Andreas Boedenauer is the CEO of Agilox North America. He has more than 25 years of experience in the IT, telecommunications, electrical engineering, and factory automation sectors and has spent most of his career in international business, with an emphasis in helping companies enter overseas markets. Boedenauer joined autonomous mobile robotics company Agilox North America in 2019 and is based in Atlanta. He previously served as president of The Executive Consulting Inc., a firm that advises European companies looking to enter the North American market, and as the co-founder of The Scotty Group, a European-based telecommunications and technology company.
Q: How would you describe the current state of the automation and robotics markets?
A: The automation and robotics markets are experiencing rapid growth, particularly within the smart AGV (automatic guided vehicle), IGV (intelligent guided vehicle), and AMR (autonomous mobile robot) sectors. This is fueled by continuous innovation and the introduction of new applications.
Q: Have higher interest rates affected investments in new technologies, such as AMRs?
A: While higher interest rates have impacted investments, particularly in the mid-sized manufacturing sector, large enterprises with high production outputs and around-the-clock operations are less affected due to their ability to achieve a short-term return on investment (ROI).
Q: You have spent most of your career in the tech sector. What would you say is the most important technological advance you’ve seen, and why is it significant?
A: Digitization remains a pivotal force in technological innovation, most notably in the automotive industry. Where cars once relied on a handful of analog devices, they now have 50 to 100 sensors and 30 to 50 electronic control units (ECUs), all interconnected via a CAN bus system that oversees every vehicle function.
This transformation is mirrored in autonomous mobile robots. Equipped with industrial PCs, these intelligent machines exemplify the leap from analog to digital—gaining significant computational capabilities that align with Moore’s Law [the observation by Intel co-founder Gordon Moore that the number of transistors on an integrated circuit will double every two years with minimal rise in cost]. Moreover, the advent of artificial intelligence (AI) promises to accelerate technological advancements, surpassing the pace set by Moore’s Law.
Q: What will it take for automated forklifts to dominate the lift truck market?
A: Customers evaluating the switch to automation prioritize factors like ease of integration into existing workflows, the need for only minimal adjustments, and the capacity for rapid modification to system configurations, such as stations and routes. Scalability also plays a crucial role, enabling fleets to adjust seamlessly to fluctuating demands.
In particular, the transition from manual forklifts to fork-based AMRs is streamlined when integration is straightforward, leveraging decentralized fleet management to enhance reliability and simplify expansion. This minimizes commissioning efforts while maintaining compatibility with existing infrastructure like load carriers and conveyors.
Above all, a consistent commitment to innovation, coupled with product stability, flexibility, and adaptability to diverse operational environments, positions IGV/AMR providers at the forefront of the industry, ready to lead the market into the future.
Q: Can you describe how your systems use “swarm” technologies and explain their advantages?
A: Swarm technology in AMRs operates on a foundation of collective intelligence, where information is exchanged across a fleet, enabling individual AMRs to fulfill work orders autonomously. This system allows for dynamic navigation within an operational area rather than fixed routes, offering the agility to adapt to immediate environmental changes or challenges.
This adaptability is crucial, as it enables route alteration in real time to maintain workflow continuity. A critical advantage of swarm-based systems is their resilience; the fleet is designed without a single point of failure. Should any AMR become unavailable, the system redistributes tasks among the remaining units, ensuring uninterrupted operations.
Moreover, the shared intelligence within the swarm network facilitates optimal task allocation, considering variables such as each vehicle’s charge level, proximity to the objective, and potential pathway obstructions. This collaborative approach ensures that the most suitable AMR is selected for each task, maximizing efficiency and resource utilization.
Q: Can you talk about how your systems allow your users to scale operations for growth and peak periods?
A: Swarm technology enhances fleet scalability by allowing the addition of new vehicles without the need for individual commissioning. Once the initial setup is complete, new vehicles can autonomously adapt by learning from the established fleet, embodying a “plug & perform” ethos.
This capability means that increases in workload, whether from growth or seasonal peaks, can be accommodated by simply adding more vehicles. Conversely, when demand wanes, vehicles can be reallocated to different clusters or locations, ensuring operational flexibility and efficiency across various sites.
Q: Your plug & play technologies allow customers to operate your systems the same day they receive them. How can such quick deployments be an advantage for their operations?
A: The essence of efficiency in system integration lies in minimizing downtime, which is especially critical for customers operating in fast-paced and continuous, 24/7 environments. Quick and seamless integration directly translates to cost savings and operational continuity, which is invaluable in such demanding contexts. Time is money!
The New Hampshire-based cargo terminal orchestration technology vendor Lynxis LLC today said it has acquired Tedivo LLC, a provider of software to visualize and streamline vessel operations at marine terminals.
According to Lynxis, the deal strengthens its digitalization offerings for the global maritime industry, empowering shipping lines and terminal operators to drastically reduce vessel departure delays, mis-stowed containers and unsafe stowage conditions aboard cargo ships.
Terms of the deal were not disclosed.
More specifically, the move will enable key stakeholders to simplify stowage planning, improve data visualization, and optimize vessel operations to reduce costly delays, Lynxis CEO Larry Cuddy Jr. said in a release.
German third party logistics provider (3PL) Arvato has agreed to acquire ATC Computer Transport & Logistics, an Irish company that provides specialized transport, logistics, and technical services for hyperscale data center operators, high-tech freight forwarders, and original equipment manufacturers, the company said today.
The acquisition aims to unlock new opportunities in the rapidly expanding data center services market by combining the complementary strengths of both companies.
According to Arvato, the merger will create a comprehensive portfolio of solutions for the entire data center lifecycle. ATC Computer Transport & Logistics brings a robust European network covering the major data center hubs, while Arvato expands this through its extensive global footprint.
The new funding brings Amazon's total investment in Anthropic to $8 billion, while maintaining the e-commerce giant’s position as a minority investor, according to Anthropic. The partnership was launched in 2023, when Amazon invested its first $4 billion round in the firm.
Anthropic’s “Claude” family of AI assistant models is available on AWS’s Amazon Bedrock, which is a cloud-based managed service that lets companies build specialized generative AI applications by choosing from an array of foundation models (FMs) developed by AI providers like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon itself.
According to Amazon, tens of thousands of customers, from startups to enterprises and government institutions, are currently running their generative AI workloads using Anthropic’s models in the AWS cloud. Those GenAI tools are powering tasks such as customer service chatbots, coding assistants, translation applications, drug discovery, engineering design, and complex business processes.
"The response from AWS customers who are developing generative AI applications powered by Anthropic in Amazon Bedrock has been remarkable," Matt Garman, AWS CEO, said in a release. "By continuing to deploy Anthropic models in Amazon Bedrock and collaborating with Anthropic on the development of our custom Trainium chips, we’ll keep pushing the boundaries of what customers can achieve with generative AI technologies. We’ve been impressed by Anthropic’s pace of innovation and commitment to responsible development of generative AI, and look forward to deepening our collaboration."
The Dutch ship building company Concordia Damen has worked with four partner firms to build two specialized vessels that will serve the offshore wind industry by transporting large, and ever growing, wind turbine components, the company said today.
The first ship, Rotra Horizon, launched yesterday at Jiangsu Zhenjiang Shipyard, and its sister ship, Rotra Futura, is expected to be delivered to client Amasus in 2025. The project involved a five-way collaboration between Concordia Damen and Amasus, deugro Danmark, Siemens Gamesa, and DEKC Maritime.
The design of the 550-foot Rotra Futura and Rotra Horizon builds on the previous vessels Rotra Mare and Rotra Vente, which were also developed by Concordia Damen, and have been operating since 2016. However, the new vessels are equipped for the latest generation of wind turbine components, which are becoming larger and heavier. They can handle that increased load with a Roll-On/Roll-Off (RO/RO) design, specialized ramps, and three Liebherr cranes, allowing turbine blades to be stowed in three tiers, providing greater flexibility in loading methods and cargo configurations.
“For the Rotra Futura and Rotra Horizon, we, along with our partners, have focused extensively on energy savings and an environmentally friendly design,” Concordia Damen Managing Director Chris Kornet said in a release. “The aerodynamic and hydro-optimized hull design, combined with a special low-resistance coating, contributes to lower fuel consumption. Furthermore, the vessels are equipped with an advanced Wärtsilä main engine, which consumes 15 percent less fuel and has a smaller CO₂ emission footprint than current standards.”
The Port of Oakland has been awarded $50 million from the U.S. Department of Transportation’s Maritime Administration (MARAD) to modernize wharves and terminal infrastructure at its Outer Harbor facility, the port said today.
Those upgrades would enable the Outer Harbor to accommodate Ultra Large Container Vessels (ULCVs), which are now a regular part of the shipping fleet calling on West Coast ports. Each of these ships has a handling capacity of up to 24,000 TEUs (20-foot containers) but are currently restricted at portions of Oakland’s Outer Harbor by aging wharves which were originally designed for smaller ships.
According to the port, those changes will let it handle newer, larger vessels, which are more efficient, cost effective, and environmentally cleaner to operate than older ships. Specific investments for the project will include: wharf strengthening, structural repairs, replacing container crane rails, adding support piles, strengthening support beams, and replacing electrical bus bar system to accommodate larger ship-to-shore cranes.