It's not unusual for shippers and carriers to oppose laws and regulations they believe will be harmful to their businesses. In fact, it happens regularly in California, where municipal and state legislators often target the transportation industry with environmental initiatives.
But now a different scenario is playing out around the Southern California ports of Los Angeles and Long Beach. Instead of simply opposing a costly anti-pollution program that could leave the ports without enough drayage drivers, some shippers and carriers have decided to become part of the solution.
At issue is the proposed Clean Truck Program (CTP), which is included in the San Pedro Bay Ports Clean Air Action Plan (CAAP). CTP aims to reduce truck-generated pollution at the ports by 80 percent over five years by phasing out all "dirty" diesel trucks and replacing them with 2007 low-emissions tractors or post-1994 retrofitted vehicles. The program, which would cost an estimated $1.8 billion, would be funded partly by government- and port-financed grants and state-issued bonds. The shortfall would be made up by a carrierpaid "truck impact fee" that could run as high as $54 per inbound gate move. The ports are also proposing a $26 "infrastructure and environmental cargo fee" per 20-foot container, to be paid by the beneficial owner of the cargo.
Much of that money would go to help motor carriers and owner-operators pay for new equipment. But the offer comes with strings—actually, tags—attached: Trucks purchased or retrofitted with those grants must be used only for port drayage for five years. The ports plan to rely on RFID tags and vehicle locator technology to monitor compliance.
The truck-replacement program also mandates that all drayage drivers must be employees of port-approved motor carriers and that all vehicles must be owned, maintained, and operated by those carriers. Some observers predict that, if approved, the mandate will wreak economic havoc on Southern California's drayage industry.
Critics take aim
Critics of the proposal say it has at least two serious flaws. For starters, the vast majority of the drayage drivers in LA/Long Beach are owneroperators who pick up and deliver containers either as independents or as contractors for local trucking companies. Few can afford to pay or borrow $50,000-plus for a new tractor or $15,000 to retrofit their current vehicle. Many of the motor carriers that employ them, moreover, are small family-owned businesses and are unlikely to have enough cash or credit to replace or retrofit the 16,000 trucks that serve the two ports.
Another problem is that drayage drivers are likely to balk at giving up their independence. At the recent Coalition of New England Companies for Trade (CONECT) Northeast Cargo Symposium, Dr. John Husing, an economist hired by the ports to assess the plan's impact, said that the number of drivers who told researchers they would go elsewhere if forced to become full-time employees is "enough to cause a supply chain disruption."
The proposed grant system won't cover the cost of all those vehicle purchases and upgrades, and the potential loss of drayage drivers at ports that handle 40 percent of the nation's containerized trade could be economically devastating, said panelist Peter Keller, president and CEO of NYK Line North America. Instead, Keller outlined an alternative approach to reducing air pollution that wouldn't put drivers in financial jeopardy or force a change in the drayage system.
What Keller is pushing is a plan developed by the Coalition for Responsible Transportation, a grassroots group launched by NYK, Target Corp., and trucking company Total Transportation Services Inc. The group wants to help owner-operators upgrade their vehicles by creating a "lease to buy" program for independent drivers who contract with port-approved motor carriers. Carriers would make the down payment on new or retrofitted trucks, treating it as a loan to the driver. The loan would be reduced by a certain percentage each year that the driver remains under contract and could eventually be forgiven entirely.
The coalition's plan would be funded by public grants and by contributions from shippers, ocean carriers, and trucking companies. Fees paid by shippers would also go toward raising drivers' pay.Why would shippers and carriers want to pay into the pot? Not only is it in their interest to prevent work-force disruptions, said Keller, but it also is an opportunity to take responsibility for reducing the dangerously high pollution levels caused by their own operations. That argument clearly has resonated: At press time, Nike had signed on to the program, and Keller said he expected most of the top 10 U.S. importers and their carriers to follow Nike's lead before the end of November.
Strange bedfellows
The California truck-replacement program has sparked some interesting side dramas. One is the unexpected alliance between the Teamsters Union and groups like the National Resources Defense Council. According to Husing, these strange bedfellows have agreed to push each other's agendas in exchange for support of the clean air program, which explains how labor issues found their way into an anti-pollution initiative.He also charged that the union and the environmentalists are looking to gain more control over the import supply chain so they can pressure big retailers on their respective concerns.
Meanwhile, the American Trucking Associations (ATA) contends that the Clean Truck Program is illegal on two counts. First, the plan violates a federal law prohibiting state laws from governing motor carriers' prices, routes, or services, said Curtis Whalen, executive director of the ATA's Intermodal Motor Carriers Conference, who spoke on the same panel. It also violates a provision in the Shipping Act of 1984 that prohibits unreasonable or discriminatory practices by a marine terminal operator, said Whalen. "If the ports actually implement this plan," he added, "ATA will litigate."
Whether the truck-replacement program moves ahead in some form or is struck down on legal grounds, Keller said, the international trade community needs to take action sooner rather than later—and not just on the West Coast. "This is an issue that will move from Southern California to Northern California to New Jersey and Massachusetts very, very quickly," he warned. "This is an issue that is going to bother everyone very soon."
Economic activity in the logistics industry expanded in January, growing at its fastest clip in more than two years, according to the latest Logistics Managers’ Index (LMI) report, released this week.
The LMI jumped nearly five points from December to a reading of 62, reflecting continued steady growth in the U.S. economy along with faster-than-expected inventory growth across the sector as retailers, wholesalers, and manufacturers attempted to manage the uncertainty of tariffs and a changing regulatory environment. The January reading represented the fastest rate of expansion since June 2022, the LMI researchers said.
An LMI reading above 50 indicates growth across warehousing and transportation markets, and a reading below 50 indicates contraction. The LMI has remained in the mid- to high 50s range for most of the past year, indicating moderate, consistent growth in logistics markets.
Inventory levels rose 8.5 points from December, driven by downstream retailers stocking up ahead of the Trump administration’s potential tariffs on imports from Mexico, Canada, and China. Those increases led to higher costs throughout the industry: inventory costs, warehousing prices, and transportation prices all expanded to readings above 70, indicating strong growth. This occurred alongside slowing growth in warehousing and transportation capacity, suggesting that prices are up due to demand rather than other factors, such as inflation, according to the LMI researchers.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
As commodities go, furniture presents its share of manufacturing and distribution challenges. For one thing, it's bulky. Second, its main components—wood and cloth—are easily damaged in transit. Third, much of it is manufactured overseas, making for some very long supply chains with all the associated risks. And finally, completed pieces can sit on the showroom floor for weeks or months, tying up inventory dollars and valuable retail space.
In other words, the furniture market is ripe for disruption. And John "Jay" Rogers wants to be the catalyst. In 2022, he cofounded a company that takes a whole new approach to furniture manufacturing—one that leverages the power of 3D printing and robotics. Rogers serves as CEO of that company, Haddy, which essentially aims to transform how furniture—and all elements of the "built environment"—are designed, manufactured, distributed, and, ultimately, recycled.
Rogers graduated from Princeton University and went to work for a medical device startup in China before moving to a hedge fund company, where he became a Chartered Financial Analyst (CFA). After that, he joined the U.S. Marine Corps, serving eight years in the infantry. Following two combat tours, he earned an MBA from the Harvard Business School and became a consultant for McKinsey & Co.
During this time, he founded Local Motors, a next-generation vehicle manufacturer that launched the world's first 3D-printed car, the Strati, in 2014. In 2021, he brought the technology to the furniture industry to launch Haddy. The father of four boys, Rogers is also a director of the RBR Foundation, a philanthropic organization focused on education and health care.
Rogers spoke recently with DC Velocity Group Editorial Director David Maloney on an episode of the "Logistics Matters" podcast.
Q: Could you tell us about Haddy and how this unique company came to be?
A: Absolutely. We have believed in the future of distributed digital manufacturing for a long time. The world has gone from being heavily globalized to one where lengthy supply chains are a liability—thanks to factors like the growing risk of terrorist attacks and the threat of tariffs. At the same time, there are more capabilities to produce things locally. Haddy is an outgrowth of those general trends.
Adoption of the technologies used in 3D printing has been decidedly uneven, although we do hear about applications like tissue bioprinting and food printing as well as the printing of trays for dental aligners. At Haddy, we saw an opportunity to take advantage of large-scale structural printing to approach the furniture and furnishings industry. The technology and software that make this possible are already here.
Q: Furniture is a very mature market. Why did you see this as a market that was ripe for disruption?
A:The furniture market has actually been disrupted many times in the last 200 years. The manufacturing of furniture for U.S. consumption originally took place in England. It then moved to Boston and from there to New Amsterdam, the Midwest, and North Carolina. Eventually, it went to Taiwan, then China, and now Vietnam, Indonesia, and Thailand. And each of those moves brought some type of disruption.
Other disruptions have been based on design. You can look at things like the advent of glue-laminated wood with Herman Miller, MillerKnoll, and the Eames [furniture design and manufacturing] movement. And you can look at changes in the way manufacturing is powered—the move from manual operations to machine-driven operations powered by steam and electricity. So the furniture industry has been continuously disrupted, sometimes by labor markets and sometimes by machines and methods.
What's happening now is that we're seeing changes in the way that labor is applied in furniture manufacturing. Furniture has traditionally been put together by human hands. But today, we have an opportunity to reassign those hands to processes that take place around the edges of furniture production. The hands are now directing robotics through programming and design; they're not actually making the furniture.
And so, we see this mature market as being one that's been continuously disrupted during the last 200 years. And this disruption now has a lot to do with changing the way that labor interacts with the making of furniture.
Q: How do your 3D printers actually create the furniture?
A:All 3D printing is not the same. The 3D printers we use are so-called "hybrid" systems. When we say hybrid, what we mean is that they're not just printers—they are holders, printers, polishers, and cutters, and they also do milling and things like that. We measure things and then print things, which is the additive portion. Then we can do subtractive and polishing work—re-measuring, moving, and printing parts again. And so, these hybrid systems are the actual makers of the furniture.
Q: What types of products are you making?
A: We've started with hardline or case goods, as they're sometimes known, for both residential and commercial use—cabinets, wall bookshelves, freestanding bookshelves, tables, rigid chairs, planters, and the like. Basically, we've been concentrating on products that don't have upholstery.
It's not that upholstery isn't necessary in furniture, as it is used in many pieces. But right now, we have found that digital furniture manufacturing becomes analog again when you have to factor in the sewing process. And so, to move quickly and fully leverage the advantages of digital manufacturing, we're sticking to the hardline groups, except for a couple of pieces that we have debuted that have 3D-printed cushions, which are super cool.
Q: Of course, 3D printers create objects in layers. What types of materials are you running through your 3D printers to create this furniture?
A: We use recycled materials, primarily polymer composites—a bio-compostable polymer or a synthetic polymer. We look for either recycled or bio-compostable [materials], which we then reinforce with fibers and fillers, and that's what makes them composites. To create the bio-compostables, we marry them with bio-fibers, such as hemp or bamboo. For synthetic materials, we marry them with things like glass or carbon fibers.
Q: Does producing goods via 3D printing allow you to customize products easily?
A: Absolutely. The real problem in the furniture and furnishings industries is that when you tool up to make something with a jig, a fixture, or a mold, you tend to be less creative because you now feel you have to make and sell a lot of that item to justify the investment.
One of the great promises of 3D printing is that it doesn't have a mold and doesn't require tooling. It exists in the digital realm before it becomes physical, and so customization is part and parcel of the process.
I would also add that people aren't necessarily looking for one-off furniture. Just because we can customize doesn't mean we're telling customers that once we've delivered a product, we break the digital mold, so to speak. We still feel that people like styles and trends created by designers, but the customization really allows enterprise clients—like businesses, retailers, and architects—to think more freely.
Customization is most useful in allowing people to "iterate" quickly. Our designers can do something digitally first without having to build a tool, which frees them to be more creative. Plus, because our material is fully recyclable, if we print something for the first time and find it doesn't work, we can just recycle it. So there's really no penalty for a failed first printing—in fact, those failures bring their own rewards in the form of lessons we can apply in future digital and physical iterations.
Q: You currently produce your furniture in an automated microfactory in Florida, with plans to set up several more. Could you talk a little about what your microfactory looks like and how you distribute the finished goods?
A: Our microfactory is a 30,000-square-foot box that mainly contains the robots that make our furniture along with shipping docks. But we don't intend for our microfactories to be storage warehouses and trans-shipment facilities like the kind you'd typically see in the furniture industry—all of the trappings of a global supply chain. Instead, a microfactory is meant to be a site where you print the product, put it on a dock, and then ship it out. So a microfactory is essentially an enabler of regional manufacturing and distribution.
Q: Do you manufacture your products on a print-to-order basis as opposed to a print-to-stock model?
A: No. We may someday get to the point where we receive an order digitally, print it, and then send it out on a truck the next day. But right now, we aren't set up to do a mini-delivery to one customer out of a microfactory.
We are an enterprise company that partners with architects, designers, builders, and retailers, who then distribute our furnishings to their customers. We are not trying to go direct-to-consumer at this stage. It's not the way a microfactory is set up to distribute goods.
Q: You've mentioned your company's use of recycled materials. Could you talk a little bit about other ways you're looking to reduce waste and help support a circular economy?
A: Yes. Sustainability and a circular economy are really something that you have to plan for. In our case, our plans call for moving toward a distributed digital manufacturing model, where we establish microfactories in various regions around the world to serve customers within a 10-hour driving radius of the factory. That is a pretty large area, so we could cover the United States with just four or five microfactories.
That also means that we can credibly build our recycling network as part of our microfactory setup. As I mentioned, we use recycled polymer stock in our production, so we're keeping that material out of a landfill. And then we tell our enterprise customers that while the furniture they're buying is extremely durable, when they're ready to run a special and offer customers a credit for turning in their used furniture, we'll buy back the material. Buying back that material actually reduces our costs because it's already been composited and created and recaptured. So our microfactory network is well designed for circularity in concert with our enterprise customers.
Generative AI (GenAI) is being deployed by 72% of supply chain organizations, but most are experiencing just middling results for productivity and ROI, according to a survey by Gartner, Inc.
That’s because productivity gains from the use of GenAI for individual, desk-based workers are not translating to greater team-level productivity. Additionally, the deployment of GenAI tools is increasing anxiety among many employees, providing a dampening effect on their productivity, Gartner found.
To solve those problems, chief supply chain officers (CSCOs) deploying GenAI need to shift from a sole focus on efficiency to a strategy that incorporates full organizational productivity. This strategy must better incorporate frontline workers, assuage growing employee anxieties from the use of GenAI tools, and focus on use-cases that promote creativity and innovation, rather than only on saving time.
"Early GenAI deployments within supply chain reveal a productivity paradox," Sam Berndt, Senior Director in Gartner’s Supply Chain practice, said in the report. "While its use has enhanced individual productivity for desk-based roles, these gains are not cascading through the rest of the function and are actually making the overall working environment worse for many employees. CSCOs need to retool their deployment strategies to address these negative outcomes.”
As part of the research, Gartner surveyed 265 global respondents in August 2024 to assess the impact of GenAI in supply chain organizations. In addition to the survey, Gartner conducted 75 qualitative interviews with supply chain leaders to gain deeper insights into the deployment and impact of GenAI on productivity, ROI, and employee experience, focusing on both desk-based and frontline workers.
Gartner’s data showed an increase in productivity from GenAI for desk-based workers, with GenAI tools saving 4.11 hours of time weekly for these employees. The time saved also correlated to increased output and higher quality work. However, these gains decreased when assessing team-level productivity. The amount of time saved declined to 1.5 hours per team member weekly, and there was no correlation to either improved output or higher quality of work.
Additional negative organizational impacts of GenAI deployments include:
Frontline workers have failed to make similar productivity gains as their desk-based counterparts, despite recording a similar amount of time savings from the use of GenAI tools.
Employees report higher levels of anxiety as they are exposed to a growing number of GenAI tools at work, with the average supply chain employee now utilizing 3.6 GenAI tools on average.
Higher anxiety among employees correlates to lower levels of overall productivity.
“In their pursuit of efficiency and time savings, CSCOs may be inadvertently creating a productivity ‘doom loop,’ whereby they continuously pilot new GenAI tools, increasing employee anxiety, which leads to lower levels of productivity,” said Berndt. “Rather than introducing even more GenAI tools into the work environment, CSCOs need to reexamine their overall strategy.”
According to Gartner, three ways to better boost organizational productivity through GenAI are: find creativity-based GenAI use cases to unlock benefits beyond mere time savings; train employees how to make use of the time they are saving from the use GenAI tools; and shift the focus from measuring automation to measuring innovation.
According to Arvato, it made the move in order to better serve the U.S. e-commerce sector, which has experienced high growth rates in recent years and is expected to grow year-on-year by 5% within the next five years.
The two acquisitions follow Arvato’s purchase three months ago of ATC Computer Transport & Logistics, an Irish firm that specializes in high-security transport and technical services in the data center industry. Following the latest deals, Arvato will have a total U.S. network of 16 warehouses with about seven million square feet of space.
Terms of the deal were not disclosed.
Carbel is a Florida-based 3PL with a strong focus on fashion and retail. It offers custom warehousing, distribution, storage, and transportation services, operating out of six facilities in the U.S., with a footprint of 1.6 million square feet of warehouse space in Florida (2), Pennsylvania (2), California, and New York.
Florida-based United Customs Services offers import and export solutions, specializing in remote location filing across the U.S., customs clearance, and trade compliance. CTPAT-certified since 2007, United Customs Services says it is known for simplifying global trade processes that help streamline operations for clients in international markets.
“With deep expertise in retail and apparel logistics services, Carbel and United Customs Services are the perfect partners to strengthen our ability to provide even more tailored solutions to our clients. Our combined knowledge and our joint commitment to excellence will drive our growth within the US and open new opportunities,” Arvato CEO Frank Schirrmeister said in a release.
And many of them will have a budget to do it, since 51% of supply chain professionals with existing innovation budgets saw an increase earmarked for 2025, suggesting an even greater emphasis on investing in new technologies to meet rising demand, Kenco said in its “2025 Supply Chain Innovation” survey.
One of the biggest targets for innovation spending will artificial intelligence, as supply chain leaders look to use AI to automate time-consuming tasks. The survey showed that 41% are making AI a key part of their innovation strategy, with a third already leveraging it for data visibility, 29% for quality control, and 26% for labor optimization.
Still, lingering concerns around how to effectively and securely implement AI are leading some companies to sidestep the technology altogether. More than a third – 35% – said they’re largely prevented from using AI because of company policy, leaving an opportunity to streamline operations on the table.
“Avoiding AI entirely is no longer an option. Implementing it strategically can give supply chain-focused companies a serious competitive advantage,” Kristi Montgomery, Vice President, Innovation, Research & Development at Kenco, said in a release. “Now’s the time for organizations to explore and experiment with the tech, especially for automating data-heavy operations such as demand planning, shipping, and receiving to optimize your operations and unlock true efficiency.”
Among the survey’s other top findings:
there was essentially three-way tie for which physical automation tools professionals are looking to adopt in the coming year: robotics (43%), sensors and automatic identification (40%), and 3D printing (40%).
professionals tend to select a proven developer for providing supply chain innovation, but many also pick start-ups. Forty-five percent said they work with a mix of new and established developers, compared to 39% who work with established technologies only.
there’s room to grow in partnering with 3PLs for innovation: only 13% said their 3PL identified a need for innovation, and just 8% partnered with a 3PL to bring a technology to life.